Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/dsproglib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6420 -
Telegram Group & Telegram Channel
🔍 How to: выбрать важные признаки и избежать переобучения

Выбор признаков и регуляризация — ключевые методы для повышения эффективности модели и предотвращения переобучения. Вот как это можно реализовать:

1️⃣ Использование Recursive Feature Elimination (RFE)

Метод RFE помогает выбрать наиболее значимые признаки, исключая менее важные:
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression

model = LogisticRegression()
rfe = RFE(model, n_features_to_select=5)
X_rfe = rfe.fit_transform(X, y)


2️⃣ L1-регуляризация (Lasso)

L1-регуляризация помогает «занулять» незначительные признаки, что эффективно для отбора:
from sklearn.linear_model import Lasso

model = Lasso(alpha=0.1)
model.fit(X, y)


📌 Рекомендация: подбирайте оптимальное значение alpha с использованием кросс-валидации, например, через GridSearchCV.

3️⃣ Random Forest для выбора признаков

Алгоритм Random Forest вычисляет важность признаков, что позволяет отбирать наиболее значимые:
from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier()
model.fit(X, y)
importances = model.feature_importances_


4️⃣ Регуляризация с Ridge (L2-регуляризация)

L2-регуляризация помогает уменьшить влияние менее значимых признаков, но не исключает их полностью:
from sklearn.linear_model import Ridge

model = Ridge(alpha=0.1)
model.fit(X, y)


5️⃣ Анализ важности признаков с помощью деревьев решений

Если вы используете алгоритмы на основе деревьев решений, важно учитывать их внутреннюю важность признаков:
from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier()
model.fit(X, y)
importances = model.feature_importances_


📌 Рекомендация: рассмотрите возможность комбинированного использования методов Lasso и RFE для более агрессивного отбора признаков, что может быть полезно, если ваш набор данных содержит множество признаков.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6420
Create:
Last Update:

🔍 How to: выбрать важные признаки и избежать переобучения

Выбор признаков и регуляризация — ключевые методы для повышения эффективности модели и предотвращения переобучения. Вот как это можно реализовать:

1️⃣ Использование Recursive Feature Elimination (RFE)

Метод RFE помогает выбрать наиболее значимые признаки, исключая менее важные:

from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression

model = LogisticRegression()
rfe = RFE(model, n_features_to_select=5)
X_rfe = rfe.fit_transform(X, y)


2️⃣ L1-регуляризация (Lasso)

L1-регуляризация помогает «занулять» незначительные признаки, что эффективно для отбора:
from sklearn.linear_model import Lasso

model = Lasso(alpha=0.1)
model.fit(X, y)


📌 Рекомендация: подбирайте оптимальное значение alpha с использованием кросс-валидации, например, через GridSearchCV.

3️⃣ Random Forest для выбора признаков

Алгоритм Random Forest вычисляет важность признаков, что позволяет отбирать наиболее значимые:
from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier()
model.fit(X, y)
importances = model.feature_importances_


4️⃣ Регуляризация с Ridge (L2-регуляризация)

L2-регуляризация помогает уменьшить влияние менее значимых признаков, но не исключает их полностью:
from sklearn.linear_model import Ridge

model = Ridge(alpha=0.1)
model.fit(X, y)


5️⃣ Анализ важности признаков с помощью деревьев решений

Если вы используете алгоритмы на основе деревьев решений, важно учитывать их внутреннюю важность признаков:
from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier()
model.fit(X, y)
importances = model.feature_importances_


📌 Рекомендация: рассмотрите возможность комбинированного использования методов Lasso и RFE для более агрессивного отбора признаков, что может быть полезно, если ваш набор данных содержит множество признаков.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6420

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

The STAR Market, as is implied by the name, is heavily geared toward smaller innovative tech companies, in particular those engaged in strategically important fields, such as biopharmaceuticals, 5G technology, semiconductors, and new energy. The STAR Market currently has 340 listed securities. The STAR Market is seen as important for China’s high-tech and emerging industries, providing a space for smaller companies to raise capital in China. This is especially significant for technology companies that may be viewed with suspicion on overseas stock exchanges.

How to Use Bitcoin?

n the U.S. people generally use Bitcoin as an alternative investment, helping diversify a portfolio apart from stocks and bonds. You can also use Bitcoin to make purchases, but the number of vendors that accept the cryptocurrency is still limited. Big companies that accept Bitcoin include Overstock, AT&T and Twitch. You may also find that some small local retailers or certain websites take Bitcoin, but you’ll have to do some digging. That said, PayPal has announced that it will enable cryptocurrency as a funding source for purchases this year, financing purchases by automatically converting crypto holdings to fiat currency for users. “They have 346 million users and they’re connected to 26 million merchants,” says Spencer Montgomery, founder of Uinta Crypto Consulting. “It’s huge.”

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from id


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA